Learning Relational Dynamics of Stochastic Domains for Planning
نویسندگان
چکیده
Probabilistic planners are very flexible tools that can provide good solutions for difficult tasks. However, they rely on a model of the domain, which may be costly to either hand code or automatically learn for complex tasks. We propose a new learning approach that (a) requires only a set of state transitions to learn the model; (b) can cope with uncertainty in the effects; (c) uses a relational representation to generalize over different objects; and (d) in addition to action effects, it can also learn exogenous effects that are not related to any action, e.g., moving objects, endogenous growth and natural development. The proposed learning approach combines a multi-valued variant of inductive logic programming for the generation of candidate models, with an optimization method to select the best set of planning operators to model a problem. Finally, experimental validation is provided that shows improvements over previous work.
منابع مشابه
Learning Symbolic Models of Stochastic Domains
In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demon...
متن کاملLearning Probabilistic Relational Planning Rules
To learn to behave in highly complex domains, agents must represent and learn compact models of the world dynamics. In this paper, we present an algorithm for learning probabilistic STRIPS-like planning operators from examples. We demonstrate the effective learning of rule-based operators for a wide range of traditional planning domains.
متن کاملDiscovering Relational Domain Features for Probabilistic Planning
In sequential decision-making problems formulated as Markov decision processes, state-value function approximation using domain features is a critical technique for scaling up the feasible problem size. We consider the problem of automatically finding useful domain features in problem domains that exhibit relational structure. Specifically we consider learning compact relational features withou...
متن کاملApproximate Policy Iteration with a Policy Language Bias: Solving Relational Markov Decision Processes
We study an approach to policy selection for large relational Markov Decision Processes (MDPs). We consider a variant of approximate policy iteration (API) that replaces the usual value-function learning step with a learning step in policy space. This is advantageous in domains where good policies are easier to represent and learn than the corresponding value functions, which is often the case ...
متن کاملExploration in relational domains for model-based reinforcement learning
A fundamental problem in reinforcement learning is balancing exploration and exploitation. We address this problem in the context of model-based reinforcement learning in large stochastic relational domains by developing relational extensions of the concepts of the E and R-MAX algorithms. Efficient exploration in exponentially large state spaces needs to exploit the generalization of the learne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016